
Ad-hoc Composition of Pervasive Services
in the PalCom Architecture

David Svensson Fors†, Boris Magnusson‡, Sven Gestegård Robertz‡,
Görel Hedin‡ and Emma Nilsson-Nyman‡

†Axis Communications
Emdalavägen 14, 223 69 Lund, Sweden

davidsf@axis.com

‡Department of Computer Science
Lund University, 221 00 Lund, Sweden

{boris,sven,gorel,emma}@cs.lth.se

ABSTRACT
We present an architecture supporting ad-hoc composition
of pervasive services, an open-source framework that im-
plements it, and the key design principles behind it. The
architecture focuses on direct human interaction, support-
ing combination of devices and services that are not explic-
itly designed to work together. The focus is on local net-
works, but extension is possible to wide area networks, in-
terconnecting several local networks. The information about
how services are connected and coordinated is collected in
a new construct called assemblies. Separating this informa-
tion from the services themselves allows combination of ex-
isting services in new creative ways without changing them.
Assemblies can provide new services and in this way be or-
ganized hierarchically. The assembly makes the architecture
of a pervasive system explicit, providing an overview under-
standable to users. Discovery and connections across differ-
ent network technologies is supported. The architecture has
been used for applications in large scale networks, and offers
mechanisms useful for system integration in general.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems—Pervasive computing infrastructures and applica-
tions; D.2.13 [Software Engineering]: Reusable Software—
Component based development

General Terms
Design, Experimentation

Keywords
Pervasive systems, middleware, end-user composition,
assemblies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPS’09, July 13–17, 2009, London, United Kingdom.
Copyright 2009 ACM 978-1-60558-644-1/09/07 ...$5.00.

1. INTRODUCTION
In the vision of Pervasive Computing, by Weiser [35], we

will be surrounded by numerous physical objects with em-
bedded computers and communication capabilities. As this
vision becomes reality, the problem of combining such de-
vices and getting them to work together in new and creative
ways becomes a demanding research area. In this paper we
present an architecture, and an open-source framework, for
ad-hoc composition of such devices and their services. The
architecture is characterised by following mechanisms:

• There is a discovery mechanism for devices, based on
a novel dynamic heartbeat mechanism.

• Devices offer services that are self-describing and can
be explored interactively.

• Services can communicate over a peer-to-peer asyn-
chronous protocol.

• The assembly construct combines services into aggre-
gates that can be named and saved for future use.

• An assembly can mediate between services not explic-
itly designed to work together, and offer new services
for others to use.

An assembly contains information about configuration —
what services it relies on, and coordination — how the com-
munication between these services is mediated. These as-
pects of pervasive systems are thus clearly separated from
computation, which is provided by the services. The com-
munication between services is supported through an inter-
action protocol, making services independent of the under-
lying network technology. Communication between devices
connected to different networks is supported through rout-
ing. The current reference implementation supports IP net-
works, Bluetooth, and IR communication, and more tech-
nologies can be added. The architecture is based on open
protocols, which means that it can be implemented in var-
ious programming languages, although the reference imple-
mentation is written in Java.

The work presented here was done as part of the Palpa-
ble Computing (PalCom) EU project [21, 22], which used
a number of scenarios for driving the development. The
scenarios were selected from professional situations, rang-
ing from small local networks such as intensive medical care

and landscape architects in the field, to complex distributed
situations, such as systems providing overview of major pub-
lic events. It quickly became evident that the end-user in
these scenarios could come up with uses and combinations
of devices and services that the original designers could not
possibly have foreseen.

We concluded that the architecture should make it possi-
ble to combine existing equipment in new ways, driven by
the end users’ ideas and needs, without involving the de-
velopers of the equipment. We call this ad-hoc composition
since it allows new ways of combining services that do not
need to be pre-planned. This is important since modifying
services of commercial products is not feasible, and would
anyway be much more technically demanding than chang-
ing an assembly. The design of the assembly mechanism has
been guided by these demands.

The PalCom framework includes browsers that support
exploration of devices and services, and interactive construc-
tion and modification of assemblies. This enables end users
to explore new services in order to understand how they
work, and to combine them in novel ways to create new
assemblies. It also allows adjusting existing assemblies to
changes in the set-up, such as replacing the devices used, or
simply accommodating new ideas. Browsers also facilitate
inspection when things do not work, down to direct interac-
tion with individual services, in order to localize the source
of the problem.

Our work is different from previous work in important
ways. The idea of using a discovery mechanism, rather than
a central registry, is also used for example in UPnP [31]
and Zeroconf [25], but our mechanism also detects missing
devices within a timeframe controllable by the user. Also,
these systems cannot handle discovery and communication
across different kinds of networks.

The PalCom approach includes a human in the loop when
assemblies are created, who can interpret descriptions of ser-
vices and directly interact with them, and mediate differ-
ences. That is in contrast to systems that rely on common
standards or domain specific protocols such as Jini [34], or
on ontologies and automatic reasoning, such as OWL-S [17].
Furthermore, Jini is defined in terms of a programming lan-
guage, Java, and relies on a central registry for discovery.

The strict separation of configuration and coordination
from computation is different from systems that require the
user to embed these aspects in a programming language
at the level of Java or C (as in Jini or UPnP). We share
the recognition of the importance of this separation of con-
cerns by the coordination language community [9, 2], and
their reasons, support for maintainability, heterogeneity and
portability are also highly desirable in pervasive computing,
as pointed out in [23].

Our approach to architecture for pervasive systems has
many similarities with Obje [6] (previously known as Speak-
Easy). The main differences lie in our assembly construct
that encapsulates configuration and coordination. Techni-
cally, Obje relies on mobile code (Java) for communicating
interfaces between services, while PalCom uses XML de-
scriptions communicated to assemblies. Our approach does
not require a PalCom device to embed a JVM. It also avoids
communicating mobile code, which tend to be voluminous.
Furthermore, mechanisms for hierarchical composition pro-
vided by assemblies are not available in Obje.

Figure 1: The GeoTagger scenario. An assembly
on the PDA tags images by combining services on
the camera, GPS and compass. An assembly on the
laptop sends images to a server at the office.

PalCom is also different from web-service architectures.
The web was designed to handle a large volume of clients,
which calls for mechanisms such as central registries and
client-server communication. In the pervasive systems we
are addressing, peer-to-peer device discovery and commu-
nication are important to support. So, although the fields
of web-services and pervasive computing address problems
that appear similar at a very abstract level (and may ulti-
mately be unified as web services become more pervasive),
there are fundamental differences in both architectural con-
siderations and the technology used.

The rest of this paper is structured as follows. Section 2
gives a motivating example of ad-hoc composition. Section 3
describes the core architecture of devices, services, assem-
blies, and discovery. Section 4 reports on experience from
case studies of using the framework. Section 5 covers the ra-
tionale of the architecture, identifying key design principles
for ad-hoc composition. Finally, Sections 6 and 7 discuss
related and future work, and Section 8 concludes the paper.

2. MOTIVATING EXAMPLE
One of the end-user scenarios in the PalCom project was

the GeoTagger: A landscape architect planning windmill
farms is taking photos of the site, recording the position
and bearing of each photo for later reference. The architect
carries a GPS and a digital compass for navigation, and a
digital camera for documentation. Unfortunately the de-
vices do not work together to facilitate the situation, to tag
images automatically. Thus, the architect has to record the
data manually — a tedious and error-prone task.

In a pervasive computing world, the devices will provide
services for taking photos, providing positions and bearings,
respectively, and the architect can compose those services
into a geo-tagging camera service, as well as other configura-
tions that came up ad-hoc during the project. The PalCom
prototype demonstration is illustrated in Figure 1. An as-
sembly (shown as a scroll symbol in the figure) on a handheld
performs the tagging of photos. Another assembly on a lap-
top uploads the tagged images to a server back at the office.

In the landscape architect scenario, there were several
other situations where these devices, and a few others, were
combined in different ways. The way those situations were
progressively discovered, in ways that were not foreseen or
planned, showed us the value of an architecture supporting
ad-hoc combination of devices and services. The following
section will present the concepts of the PalCom architecture
introduced in this example.

Figure 2: Assemblies in the GeoTagger scenario.
TaggingCamera tags pictures with coordinates and
directions. Uploader connects to a synthesized ser-
vice to upload tagged images to a server at the office.

3. CORE ARCHITECTURE
The core components in the PalCom architecture are de-

vices, services, connections and assemblies. Figure 2 shows
how the example scenario GeoTagger can be realized in the
PalCom architecture.

The TaggingCamera assembly connects to services on three
devices (GPS, Compass, and Camera) and performs the ac-
tual tagging of images, using an unbound service (Coordi-
nateStuffer). The resulting tagged images are offered through
a new, synthesized service (CameraSynth). The Uploader
assembly connects to the service of the TaggingCamera as-
sembly as well as to a service on a database server at the
office, and uploads the pictures as they become available.
The figure also hints at how PalCom can span larger net-
works using the tunnel mechanism, explained in Section 5.7.

We will now examine the core concepts of the architecture,
exemplified using Figure 2. See [28] for more details.

Devices are physical objects which users interact with.
Typically, a device offers services that expose some aspect
of its hardware functionality, such as direction and position
in the example.

The identity a device has on a network is important to
its users, e.g., it is important to combine pictures from my
camera with bearings from my compass. Because of this,
each device has a stable identity and an explicit place in
the architecture. The identity of a device is independent
of the addresses the device might have on the network it is
currently connected to.

Services provide interaction interfaces, and are either
bound to the device they reside on, or unbound. A bound ser-
vice provides an interface concerning specific functionality
available on a particular device, whereas unbound services
provide pure computations. That means that an unbound
service can be placed on any device or moved between de-
vices as, e.g., Java components.

In the example, the bound services Position, Direction,
Photo, and Storage provide interaction interfaces, while the
unbound CoordinateStuffer provides a computation inter-
face to manipulating the representation of an image.

Discovery of devices is performed using a broadcast heart-
beat protocol. The protocol allows devices to discover other
devices on the network, to connect to devices, and to request
descriptors of devices and services which will be given in an
XML representation1. In the example, the TaggingCamera

1In the small, local, ad-hoc networks of our scenarios, using

assembly will connect to required services when they have
been discovered and become available.

Device descriptors describe available services while ser-
vice descriptors list commands a service can send or receive,
along with a list of parameters for each command.

A browser developed for the architecture allows users to
interactively explore services, through user interfaces auto-
matically rendered from these service descriptions. This is
useful for “remote control” and for inspection of services.

Connections are paths of communication between ser-
vices. In Figure 2, connections are shown as lines between
services provided by devices and assemblies. Connections
can be established manually by a user, e.g. by exploring
and directly interacting with a service, or automatically by
an assembly.

Connections are announced explicitly by the discovery
mechanism and can be viewed in a browser when inspecting
the communication situation in, e.g., a room. This makes
communication in a PalCom system visible to the user.

A Service Interaction Protocol defines how commands
and parameters are packaged and sent between services over
a network. The protocol defines message formats at a gen-
eral level, i.e., not at the domain level. This means that it
just allows services to send and receive messages in a com-
mon format, according to their service descriptions. This is
necessary for ad-hoc composition.

Communication in the architecture is flexible in the sense
that it supports different distribution forms such as one-
to-one, one-to-many and many-to-many, but also different
communication variants like message-based and streaming.
Message-based communication is asynchronous and peer-to-
peer. This means that there are no built-in wait states and
either side can initiate messaging. A service can handle
several parallel connections with different on-going “conver-
sations” if needed.

Assemblies are the elements in the PalCom architecture
that enables composition of services [26]. It can be seen as a
kind of multi-connector tailored wiring, which connects to a
number of services, defined by end-users or developers. An
assembly specifies the following:

• devices it depends on,

• services it uses on those devices,

• connections it needs to those services or direct connec-
tions between those services,

• a script defining what actions the assembly takes upon
receiving messages from the services, and

• a set of synthesized services i.e., services offered by the
assembly.

In Figure 2, the two assemblies are shown as boxes with
scroll symbols. On their borders are small boxes, for the
connections to services used by the assemblies, and a ser-
vice symbol with a hook for CameraSynth, the synthesized
service of TaggingCamera.

Configuration is expressed in assemblies by specifying con-
nections between services, while coordination is expressed in
a script. These two aspects are in this way separated from

broadcast heartbeats is an efficient way for devices to keep
track of each other. For scaling up to larger networks, the
basic protocol can be extended, as discussed in [29].

when image from Camera
send stuff(image , currentCoord , currentDirection)

to CoordinateStuffer
when taggedImage from CoordinateStuffer

invoke photo(taggedImage)
on CameraSynth

Figure 3: A part of the TaggingCamera assembly.

the computation provided by services. A service has no in-
fluence over what it will be connected to, in the same way as
a device with a physical connector has no control over where
a user might stick the other end of the cable. In the exam-
ple, this is illustrated with the GPS position service which
will send coordinates to whichever service it is connected to.

Addressing in the PalCom architecture is independent
of the network technology at hand. This means that the
connections an assembly depends on are established inde-
pendently of where the assembly is executed. A service ad-
dress identifies a particular service instance on a particular
device. Due to this an assembly can be moved, without
changes, to the currently most suitable device, with regards
to computational resources, bandwidth, etc.

An assembly’s dependency on connections can be expressed
in terms of mandatory, optional or alternative bindings. In
this way the PalCom architecture offers a fairly elaborative
scheme to express dynamic behavior depending on the avail-
ability of other services.

Support for explorative composition is an essential
part of the PalCom architecture. The design of the archi-
tecture is very much influenced by an explorative hands-on
methodology for assembly construction. Users should easily
be able to manually explore new compositions before the
behavior is automated as an assembly [27].

In general, available services cannot be expected to fit
perfectly together, so an assembly often has to mediate be-
tween services and coordinate the message flow. This can
be expressed in the script part of an assembly.

In the example, the TaggingCamera assembly, see Fig-
ure 3, expresses that: 1) An incoming image from the Cam-
era, together with the last available coordinate from the
GPS, and the direction from the Compass, will be sent to the
CoordinateStuffer. 2) The resulting taggedImage arriving
from the CoordinateStuffer will be sent to whatever service
connected to CameraSynth in a photo message. Interaction
is achieved without having to change any of the involved
services on the included devices.

The reference implementation of the PalCom archi-
tecture and the PalCom framework is implemented in Java.
The simplest way to start to use the framework is to enable
a device to provide a PalCom service. This is achieved by
creating a subclass to an abstract class in the framework.
In this subclass information about the service; its name and
service description, needs to be added as well as behavior
for incoming and outgoing commands. Bound services often
use functionality from the underlying device to implement
this behavior.

The framework, which observes the discovery protocol and
facilitates the service interaction protocol on the available
network, provides the other mechanisms needed for the de-
vice to act as a PalCom device. On a more capable device,
an assembly and service manager can be included, enabling
it to execute assemblies and unbound services.

The framework also provides browsers which allow users
to interact with PalCom devices. The most capable one is
an Eclipse based interactive assembly editor. It includes
facilities to discover and explore devices and their services,
as well as to edit and execute assemblies.

Assembly managers discover each other and can exchange
assemblies, making it simple to move and execute an as-
sembly (as well as unbound services) on a remote device.
An assembly manager is also available as a stand alone pro-
gram, which can be used to create computation servers for
PalCom.

4. EXPERIENCE FROM CASE STUDIES

4.1 PalCom prototypes
Using the framework available in the PalCom reference

implementation [22], PalCom teams have built a number
of prototypes for user scenarios, where services have been
combined into assemblies, as presented in this paper. One
example is the GeoTagger prototype mentioned above.

Another scenario is Active Surfaces [4], developed at the
University of Siena, involving puzzle tiles which float around
in a pool. Therapists used these tiles in exercises when treat-
ing physically and mentally impaired children. Each tile
runs several services and an assembly, and a group of tiles
can dynamically be reconfigured to form a puzzle.

A third example is the Incubator prototype [10], also de-
veloped in Siena, where services on different devices around
an incubator at a hospital were used for obtaining better in-
tegration between heterogeneous devices, and for performing
cross-cutting functionality, such as alarm handling.

A more complex example is the use of the Major Inci-
dents Overview [15] prototype which was used at the Tall
Ships’ Race event in Aarhus 2007 for supporting emergency
response personnel; the fire brigade, police, medical teams,
etc. In this scenario, developed at Aarhus University, live
tracking of key persons and vessels taking part in the race
was coordinated using assemblies. Information was collected
as pictures from mobile phone cameras and via live stream-
ing of video from strategically positioned video cameras.

4.2 IT in health-care
The IT-systems at a hospital is a very diverse collection

of computerized functions, ranging from large systems like
databases for patient records, X-ray images etc., automated
laboratories or intensive care equipment with life-critical
support-functions, to small single-function devices for mea-
suring blood pressure.

Our experience from this area comes mainly from a project
with Lund University Hospital (USIL) with the aim of un-
derstanding the implications of current development with
increasing use of small, portable and communicating de-
vices. During this work we have learned that hospitals of
this magnitude not only face the problem of adjusting to new
demands, but already have demanding problems related to
structuring and re-structuring of large distributed systems.

A typical example is illustrated in Figure 4. There are over
a dozen laboratories at the hospital, each with subsystems
of their own, reporting results to different units, internal or
external to the hospital. This system has evolved over some
30 years. Over time, new local systems have been installed
to automate certain functions, often initiated from the local
department. These systems have been interconnected on

Clinical
Biochemistry

Clinical
Microbiology

. . . Surgical
Pathology

Emergency
Room (ER)

. . .
Internal
Medicine

Unit (IMU)

Intensive
Care Unit

(ITU)

Home
Care Unit
(HCU)

Home
Care Unit
(HCU)

Home
Care Unit
(HCU) Private

Clinic

Private
Clinic

Private
Clinic

Support
systems

Medical
laboratories

Senders/Receivers
of referrals

Figure 4: Example of referral handling at a hospital. Arrows show connections between units, internal and
external to the hospital. Units, at the source of an arrow, know the address of the system at the other end.
A solid line indicates a network connection, while a dashed line indicates use of traditional paper referrals.

a per case basis and on top of this there are connections
to external services such as national registers, pharmacies,
private clinics, etc. The end result is a complicated web of
dependencies.

Each path of communication is managed individually by
each laboratory, the protocols and formats adjusted to the
receiving end. Introducing this communication has been
complicated, since most of the included systems are com-
mercial. In some cases, integration has not been feasible
and results are delivered on paper and scanned for elec-
tronic storage. Changes to this structure, such as replacing
a patient record system, are very complex due to the poten-
tially large number of dependencies on other systems, some
of which cannot be changed.

The IT environment is thus a complex distributed envi-
ronment in itself, but also an interesting application area
for pervasive systems due to the increasing use of small,
portable equipment and mobile communication devices. A
move towards an architecture in support of pervasive com-
puting has the potential of also solving persistent problems
related to re-structuring.

5. DESIGN PRINCIPLES
The design of the PalCom architecture was initially guided

by PalCom end-user scenarios like the GeoTagger, and has
evolved based on experience from additional scenarios like
the one for USIL. In this section we discuss the rationale for
the architecture, identifying a number of design principles
that we have found essential to support ad-hoc composition.

5.1 Human in the loop vs. Automated reason-
ing

In managing pervasive systems one might hope that they
just work, more or less by themselves. That would require
automated reasoning, based on a common ontology and a
semantic interpretation of service descriptions, along with
an interpretation of a user’s intentions. The result would
be a fairly complicated machinery which has the risk of not
being transparent to the user.

The PalCom architecture takes a less automated approach
which keeps the human in the loop. Two common proper-
ties of the example scenarios are that they contain a lim-
ited number of devices and that the users have a clear view
of what they want to accomplish with their composition.
Therefore, our objective has been to make it easy for end-
users to combine the devices and services at hand in any way
they want. In the PalCom system, users can interactively ex-
plore functionality of services, combinations of services and

mediations between services, and the result can be tried out
directly with the actual services. In this way, the process
of combining services becomes understandable, visible and
light-weight. When a composition has been designed and
tried out, the configuration and coordination information
can be saved as an assembly. This relieves a user from hav-
ing to do the same work over and over again, but also makes
it possible to share configurations with other users.

Focusing on human interaction does not, however, exclude
mechanisms which could help a designer find potentially use-
ful services based on matching of, e.g., service structures or
data types. A reasoning agent could make suggestions, and
the human in the loop can inspect results and make sure
they meet expectations.

5.2 P2P discovery vs. Central registry
Devices and services need to be found and identified in

a pervasive system. In architectures designed for use in an
available infrastructure, one can assume a central facility for
registration and look-up. This is for example the case for
Jini [34], where a central registry for services is assumed to
always be available, and for UDDI [19] which offers a lookup
of Web services.

In the situations we consider, that is not feasible, since
devices cannot be assumed to always be available. Instead
we chose a peer-to-peer model, using a broadcast heartbeat
mechanism to keep all interested devices updated on which
devices that are available, which new devices that have been
turned on/come into reach or turned off/gone out of reach.

This kind of periodic messaging is known to be problem-
atic if used unwisely in large networks. In PalCom the
heartbeat period can be controlled by involved devices or
end-users. The discovery needs vary from case to case. For
instance, in an intensive care situation a doctor needs to
know within seconds if a heart-rate monitor has become un-
available, while in an office environment the time-constraints
for a failed device is much less pronounced.

Zeroconf [25] uses a similar approach, where devices and
services announce their availability, but it lacks an efficient
mechanism to report that devices are unavailable.

5.3 Self-describing services vs. Domain-speci-
fic standards

For two services to communicate they must share a com-
mon protocol at the domain level. Typical examples of such
protocols are Jini’s standard print service API [13], UPnP
standard device categories [30] or Bluetooth profiles [3].

Figure 5: Organizing dependencies between services. (a) The traditional approach where services depend
directly on each other. (b) Our approach: independent services are composed using a separate mechanism.

That approach may seem simple and straightforward, but
has severe drawbacks for ad-hoc composition. First of all, a
domain standard needs to be exhaustive, including all pos-
sible functionality the domain has to offer. Even for fairly
small applications, like controlling the functions of a printer,
that turns out to be a surprisingly complex task. In other
areas, like health care [1], standards become overwhelmingly
large which can be a problem when every device needs to
understand all of it, or at least know enough about it to be
able to ignore irrelevant parts.

Secondly, standards need to be updated when new func-
tionality becomes available and this is usually a slow process.
This might lead to different generations of equipment which,
in the end, cannot communicate fully despite following the
same standard.

The approach taken in PalCom is to have services describe
themselves at the domain level in a human-readable format
(XML). The descriptions explain what messages a service
can send and receive, which parameters they have etc.

The PalCom architecture does not require domain spe-
cific standards. However, it is still possible to take advan-
tage of available standards. The amount of work required to
change from one service to another is smaller if the two ser-
vices are similar, which is likely if they follow the same stan-
dard. In either case, not requiring domain specific standards
makes the PalCom architecture flexible enough to handle
both cases.

5.4 Separating configuration from the service
implementation

In many distributed systems, a service is assumed to con-
nect to other services it knows about. This is particularity
pronounced in client-server architectures. This arrangement
does, however, have the drawback that services depend di-
rectly on each other. If the service protocol is changed on
one service, all the services that it communicates with need
to be changed as well. Figure 5 (a) illustrates this situation,
where S2 depends directly on S1, and needs to be changed
if S1 changes.

In the PalCom architecture, a service does not embed the
address of other services it will be connected to, nor is it
dependent on the protocol of other services. Instead the
configuration information is stored in an assembly. The as-
sembly connects the two services, either directly, or most
commonly via the assembly itself.

Direct connections are possible in cases where there is
an exact match between two services, i.e., they have corre-
sponding message sets and no mediation is required. This is
unlikely, but might occur if two services have been designed
explicitly for each other. In the common case, services do
not directly fit together, instead they communicate via an
assembly which takes care of required mediation and coor-
dination. This is shown in Figure 5 (b).

One of the important benefits of this architecture, with a
clear separation between computation, realized in the ser-
vices, and configuration and coordination, realized in the
assemblies, is that re-organization can be done without hav-
ing to change the services. Enabling end-users to make,
at least, simple substitutions of devices or services ad-hoc
in the field was one of the important requirements derived
from the example scenarios.

5.5 Explicit devices vs. Device agnosticism
In many situations, such as in large Internet applications,

it is tempting to focus on the services needed and ignore
their location, i.e., the identity of the computers that provide
them. For example, the machine actually hosting a web-
service is of little importance to an end-user, in contrast to
a printing service where users need to know on which printer
it resides in order to collect print-outs.

In pervasive systems involving physical devices that are
actually handled, the identity is important, and such devices
cannot be substituted without a corresponding action in the
physical world. In the PalCom architecture we have made it
explicit that a service is provided by a device. In the health
care example, if a heart-rate monitor service suddenly goes
off-line, the doctor needs to know which device it was, in
order to identify the patient in danger.

This approach does not exclude cases where the identity of
a service provider is not important, e.g., an unbound service
converting video from one format to another.

5.6 Network independent addressing
The addressing schemes of different network technologies

such as IP, Bluetooth etc, address interfaces rather than
devices. Devices with more than one interface can as a con-
sequence have more than one distinct address at the same
time. That happens when a device has several interfaces of
different technologies, such as Ethernet and Bluetooth, at
the same time, but also if it has more than one interface
using the same technology. For example, IP based Ether-
net interfaces for both TP cable and WLAN, which is not
uncommon, or indeed two interfaces for TP cable.

Furthermore, on, e.g., IP networks, addresses are often
dynamically assigned and might change from time to time,
especially if a device is moved between networks. These
technical observations of existing technologies clearly show
that these addressing schemes cannot be used in the situa-
tions where we consider the identity of a device important.

In PalCom we have defined a separate addressing scheme
where devices are assigned unique and permanent addresses.
Mapping between a PalCom address and an address in a par-
ticular network is made during the discovery phase. These
addresses make it possible to communicate with a device
via different network paths, switching between networks as
they come and go. It also enables assemblies to establish

connections to the devices that are part of its configura-
tion, independently of how these devices can be reached. As
a result, an assembly can be moved between devices and
networks, without change, and still communicate with the
devices included in its configuration.

5.7 Tunnels and local networks vs. The whole
Internet

The initial focus of PalCom, and most pervasive systems,
are local networks, such as in the GeoTagger and health
care scenarios. Such simple situations are, however, often
complicated by additional demands to reach remote devices,
e.g. the image server at the office in the GeoTagger scenario.

Allowing access to remote devices is needed in many per-
vasive settings. A straightforward solution would be to con-
sider the whole Internet as one big pervasive system. How-
ever, this is not feasible for our architecture since many of
the design decisions focus on practicality in local networks
and do not work on a larger scale. For example, the discov-
ery mechanism based on broadcasting is not appropriate for
the Internet.

The problem has been solved with a novel construct called
tunnels, which connects two or more local PalCom networks.
Discovery and messages between services are forwarded effi-
ciently over such tunnels, hence, creating a larger distributed
“local” network. The PalCom protocols have been designed
to make this possible. For the discovery protocol, the tun-
nel openings on each network act as proxies for the PalCom
devices on the remote network.

The discovery broadcasting mechanism is still local and
only the changes in discovered devices on each network is
communicated over the tunnel. The addressing mechanism
for PalCom devices mentioned above makes it possible to
route only the messages addressed to remote services over
the tunnel.

Furthermore, the communication over the tunnels is en-
crypted, making it secure when transmitted over hostile net-
works. Tunnels differ from virtual private networks (VPNs)
as a tunnel is symetrical, connecting two remote networks
whereas a VPN is asymetrical, allowing a single computer to
connect to a remote private network. The tunnels between
networks need to be put in place explicitly by users, but
once in place they can be maintained automatically.

5.8 Supporting a service interaction protocol
Many systems that support pervasive discovery, like Ze-

roconf, typically do not support any particular service in-
teraction protocol: once the services have made contact, it
is up to them to communicate using whatever protocol they
share. Other systems, e.g. Jini, UPnP, and Web Services,
offer some protocol for service interaction. However, for ad-
hoc composition we have identified additional, more specific,
requirements on a common service interaction protocol:

• Messages between services need to be routed over dif-
ferent physical networks and routed through tunnels.
This requires a standardized message format that in-
cludes logical connection addresses.

• The rendering of user interfaces is based on informa-
tion given in service descriptions provided via the dis-
covery protocol. However, to actually send messages
to services and to display received messages requires a
common protocol for service interaction.

• Likewise, to allow an assembly to mediate between ser-
vices, a common interaction protocol is required.

PalCom offers a service interaction protocol that goes to-
gether with the support for network independent addressing
as well as tunnels, mentioned above. Note that the PalCom
service interaction protocol is not domain-specific. It only
defines the coordination messages for setting up connections,
and the basic form of service messages with command name
and arguments. The actual (domain-specific) commands
and arguments used for a specific service are described in
a service description and can be arbitrarily chosen.

5.9 Asynchronous events and P2P vs. RPC
and client-server

In programming languages the notion of subroutines, pro-
cedures, functions, methods etc. have been very successful
for structuring software. Execution of such constructs fol-
lows a call-return pattern, where the caller is delayed until
the called construct is ready and returns.

When considering distributed systems it is tempting to
re-use this successful idea, creating remote procedure calls
(RPC) or remote method invocations (RMI). Programming
distributed systems with such constructs appears simple and
powerful since the semantic difference between a local pro-
cedure call and a remote procedure call is small and the
difference in the code appears small. Technically, the differ-
ences are, however, huge [14].

When calls are remote, the time overhead of communica-
tion with a remote computer is several orders of magnitude
longer than a local call. During this time the calling process
is blocked and cannot proceed until the result is at hand,
while during a local procedure call the machine is busy ex-
ecuting the procedure. Although it is in principle possible
to counter this effect by introducing parallel processes, the
result is often poor performance due to a large number of
wait states.

Secondly, the use of RPC/RMI enforces a request-reply
style of communication where one side plays the role of a
client posting requests and the other the role of server, of-
fering replies. This means that one side, the client, has the
initiative to initiate communication, request-reply pairs, or
pull communication. In pervasive systems this limitation is
not always practical. The two sides need to communicate
on a more equal footing, using both push and pull. Again,
it can in principle be solved, by using two communication
links for each connection, each behaving as both client and
server, but this introduces new problems when synchroniz-
ing the associated services in each end.

Another successful programming construct is concurrent
processes (or tasks), which communicate with events over
queues. In a distributed setting with two computers actu-
ally executing in parallel and communicating over a buffered
communication link this model matches the situations in our
scenarios. Using this model, a process on one machine send-
ing an event will continue with other processing and even-
tually receive a possible reply as a separate event. Also,
this model does not favor one side over the other but com-
munication can be initiated from both sides at any time, a
mechanism often called peer-to-peer communication.

Although it may seem a very technical issue, the choice of
communication metaphor has a great impact on both per-
formance, functionality, and decoupling of services[7], which
favors asynchronous peer-to-peer communication[16].

5.10 Summary of design principles
To sum up, we have identified the following important

design principles for supporting ad-hoc composition:
Human in the loop to explore service functionality be-

fore automating behavior through assemblies.
Peer-to-peer discovery to allow devices to dynamically

enter and exit a local network.
Self-describing services to allow combining unrelated

services and to avoid dependence on out-of-date standards.
Separating configuration from service implemen-

tation to make service configurations visible to users and
to allow reorganization without changing individual services.

Explicit devices because device identity is fundamental
in pervasive systems where the user interacts directly with
physical devices.

Network independent addressing to allow users to
build compositions based on logical interconnection of de-
vices independent on physical networking technology.

Local networks and tunnels to take advantage of the
locality of the physical devices while at the same time open-
ing the possibility to interconnect different such localities.

Supporting a service interaction protocol to allow
tunnel routing, remote interaction, and assembly mediation.

Peer-to-peer asynchronous events as the basic com-
munication mode, allowing both push and pull interaction,
and to avoid the common performance problems of RPC.

The common denominator of these design principles is to
base the architecture on the simple, or fundamental, case,
in order to make it open-ended and extensible. Therefore,
while more advanced constructs like RPC, centralized dis-
covery, automated reasoning, etc., are complementary rather
than competing, the point is that they can be added on top
of an architecture not requiring them, whereas the converse
is not necessarily true. For pervasive computing and ad-hoc
composition, we find such open-endedness a crucial archi-
tectural quality.

6. RELATED WORK
6.1 Pervasive systems

The Obje project at Xerox Parc [6] has similar aims as
PalCom, and has coined the term recombinant computing
to characterize their approach for providing interoperability
between devices, where a user can combine the functionality
of services ad-hoc. It shares, with PalCom, the ideas of hav-
ing user-in-the-loop interaction and by using self-description
rather than standards for sharing protocols, but uses a tech-
nique of sending communication proxies as mobile code to
communicate them. This is much heavier from most respects
(communication overhead, demands on execution environ-
ment, user expertise), than communicating descriptions in
XML as PalCom has chosen to do. Obje has also chosen
other design alternatives than PalCom on other important
aspects. Obje focuses on user-initiated direct connections
between services, rather than keeping configuration and co-
ordination in an assembly. The perspective on network in-
dependent communication, addressing and routing is also
missing in this IP centric approach. In its implementation,
Obje uses Jini which has directory-based discovery.

Aura [8], developed at CMU, focuses on providing au-
tomatic configuration based on interpretation of users ac-
tivities/tasks. Services are discovered and descriptions of
them can be communicated using XML representations in an

asynchronous protocol. Services can be wrapped to conform
to the APIs defined in the Aura infrastructure. Users can
express their preferences as parameters in different aspects
(supplier, QoS, configuration). Aura then helps the user
configure the available services with help of these parame-
ters and the task at hand. Aura shares some design choices
with PalCom: discovery, supporting interaction communica-
tion, asynchronous communication, and separation of con-
figuration information. It is more developed in the direc-
tion of automated configuration than PalCom, but seems to
rely more on standards (APIs) for services, and it is unclear
what support it offers for expressing coordination between
services. It focuses on user involvement in configurations
formed ad-hoc, but with less emphasis on understandability
and visibility for the user.

Gaia [24] is a meta-operating system for active spaces,
i.e., for environments such as offices and meeting rooms.
The purpose of Gaia is to provide abstractions for the het-
erogeneous devices in such environments, and make the en-
vironments programmable. Mechanism for composition in
Gaia are targeted towards developers, not users. Developers
can describe context using predicates, and coordinate appli-
cations using a scripting language. There is a centralized
presence service, and a central repository with information
about resources. This is reasonable, because the active space
has a limited and predefined physical boundary, unlike gen-
eral PalCom environments. This also means that there is no
issue about going beyond the local network, as with the Pal-
Com tunnels. Gaia has been implemented using Corba, and
uses its mechanisms for addressing. There are both RPC
and asynchronous event between components. Gaia does
not target the problem of evolving service interfaces, but
assume that developers use applications currently available
in the active space.

6.2 Discovery
There are several systems that only aim at providing the

discovery mechanisms needed in pervasive systems.
Jini [34] from Sun uses a central repository for providing

information about available services. This is a technique
we have concluded to not be suitable for the small, ad-hoc
networks we want to be able to support. Furthermore, the
lease mechanism is designed so the provider of the service,
rather than the user of a service, defines the period after
which information about a non-available service is removed.
This is not suitable for the situations we have encountered,
where the user of a service (say a doctor using a pulse in-
dicator) is the one who knows how urgent the situation is.
Furthermore, Jini uses mobile Java code to support com-
munication, but requires the moved proxy to implement a
defined standard protocol, such as an interface for a printer.
Jini thus depends on standard APIs, and all configuration
and coordination needs to be embedded in Java programs,
which is too static for ad-hoc combination of pervasive sys-
tems. Jini is service oriented, where the devices it resides
on is not present, which also is inadequate for the pervasive
systems we have encountered. It also relies on an IP-centric
approach.

Zeroconf [25] supports discovery using a broadcasting
technique which is well suited for pervasive systems. It does,
however, lack an autonomous mechanism for removing un-
available services: they are removed when attempted to be
used. Zeroconf is a service-oriented, IP-centric system, and

support for service communication, that we have found es-
sential, is out of scope for this system.

UPnP [31] uses a broadcasting mechanism for discov-
ery, similar in functionality to PalCom, although it misses
mechanisms for tuning the frequency and thus the removal
of non-available services. UPnP uses 16 standards for known
devices types, and their services. It is services of these types,
known in advance, that is simple to interface to. There is,
however, no lightweight description language for configura-
tion or coordination of services. Combining services thus
includes a fair amount of low level programming in so called
control points. There is no separation of configuration and
control from services, and together this makes changes to
a pervasive system not as lightweight, or with the user in
control, as we have been demanding for supporting ad-hoc
combinations. UPnP is IP-centric and uses SOAP over TCP
which limits its use to the RMI style of communication.

DLNA [32] is built on top of UPnP for support of putting
networked home audio/video equipment together, both mo-
bile and stationary. DLNA adds some well defined refined
device-types, Digital Media Players, Servers and Converters,
but little more.

6.3 Web services
Web Services [33] is a collective name of Internet tech-

nologies that exhibit some of the functionality associated
with pervasive systems, and can thus be compared in some
respects. Discovery is here often based on central repository
techniques, such as DNS for finding servers, or UDDI [19]
for finding services. Services can be described in the Web
Service Description Language (WSDL) [5], which matches
the service descriptions in PalCom. The semantics of ser-
vices can be described in OWL-S [17], enabling automated
reasoning and selection of services. Service interaction is
most commonly implemented using SOAP [11] over HTTP,
and thus TCP, which enforces RPC, i.e. a synchronous,
client-server style of communication. Configuration and co-
ordination of service interaction, and the resulting aggre-
gated functionality, can be implemented using BPEL [20],
in plain programming, or using a more lightweight process
known as mash-ups.

This being an IP-centric approach, there is no support for
device identification or diverse network technologies. For
end users of pervasive systems built this way, there would
be very little possibilities for doing ad-hoc changes. Systems
put together this way, using a set of fairly bulky technologies,
might not be feasible to use on small devices. Such systems
will be limited by the techniques involved, some of which
were noted above.

There are several systems for Web services that offer tech-
niques as the ones outlined above, for example WebSphere
[12] from IBM and BizTalk [18] from Microsoft. These
toolboxes, often called integration platforms, support inte-
gration in terms of business models in large IT installations.
Although this is a somewhat different field, its functionality
overlaps some of the aspects we have identified for pervasive
systems, albeit with a difference in aim and scale. Look-
ing closer on BizTalk, the perspective is to offer integration
mechanisms for existing services, using the above diverse
Web-service technologies. Integration with existing services
is implemented as adapters, converting protocols and pa-
rameter formats, which have to be developed for each case,
although there is some support for widely used technologies.

Its support for business models, i.e. coordination, is realized
with the language BPEL, mentioned above. These orches-
trations are executed on servers becoming communication
hubs. There seems to be no support for ad-hoc discovery,
but it offers some dynamic binding through ports that enable
services to provide parameters for service look-up. Develop-
ment is done using the Microsoft development environments,
is clearly not geared towards end users, and does not sup-
port interactive changes in place. This reflects the focus on
large IT installations and organizations, rather than ad-hoc
pervasive systems.

7. FUTURE WORK
The design work has been guided by the principle of in-

troducing fundamental components of the architecture and
simple mechanisms first. Through the experience of using
the architecture we have, however, seen the need for exten-
sions and additional functionality.

In several scenarios, there is a need for a dynamic binding
mechanism, besides the alternative bindings, that allow ser-
vices discovered for the first time to be automatically utilized
by an assembly without change. Currently such situations
require manual intervention.

Although being very simplistic, the Assembly language
for describing coordination has proven surprisingly useful.
There are, however, cases where a richer language can be
motivated; e.g., where actions depend on previous events
or states. The language is motivated by its simplicity, and
should, however, not be allowed to grow into the full com-
plexity of a programming language.

Security issues has not been in focus in this work. How-
ever, we do believe that state-of-the art security technology
can be directly applied to our architecture. For instance,
DeviceIDs are not tied to any network technology or speci-
fied in detail, so they can be cryptographically signed. The
tunnels are already implemented using encrypted SSL con-
nections. The PalCom wire protocol has support for adding
signatures and authentication to messages.

Mechanisms for controlled versioning of services and as-
semblies have been designed into the architecture, but mech-
anisms for automatic update of these have only been proto-
typed and the details needs to be worked out.

With the ability of ad-hoc composition of services, there
seems to come a frequent need to construct custom made
user interfaces, tailored to a particular assembly. It would
be interesting to further study how such integration and
composition of user interfaces can be supported.

8. CONCLUSIONS
Ad-hoc composition means combining devices and ser-

vices that were not explicitly designed to work together. We
have presented a new architecture, making such ad-hoc com-
position possible for pervasive systems. A reference imple-
mentation for the architecture is available as an open source
framework. Based on our experience from real-world scenar-
ios and from iterative development of both the framework
and prototype applications, we have identified a number of
key design principles that support ad-hoc composition of
pervasive services.

To match the physical world that end users interact with,
devices are explicit in the architecture and networks are
primarily local. Logical device identities allow abstraction

over underlying physical networks. The demands for end-
user involvement have led to making devices, services, and
connections interactively visible and explorable, relying on
self-describing services, peer-to-peer discovery, and a ser-
vice interaction protocol that is common to the services,
yet domain-independent. A new light-weight construct, the
assembly, separates configuration from computation and al-
lows users to build and modify pervasive systems ad-hoc,
without the need for changing existing services.

Acknowledgments
Much of this work was carried out as part of the PalCom
EU IST project, and we are grateful to our project collegues
for their work on different application scenarios, as well as
on related parts of the PalCom architecture and framework.
Thanks also to Thomas Forsström who implemented key
parts of the PalCom networking support, including the tun-
nels. This work was also partially funded by VINNOVA.

9. REFERENCES

[1] American National Standards Institute (ANSI).
Health Level Seven. http://www.hl7.org/, 2009.

[2] L. Andrade, J. L. Fiadeiro, J. Gouveia, and
G. Koutsoukos. Separating computation, coordination
and configuration. Journal of Software Maintenance,
14(5):353–369, 2002.

[3] Bluetooth.com. Specification Documents.
http://bluetooth.com/Bluetooth/Technology/
Building/Specifications/.

[4] Jeppe Brønsted, Erik Grönvall, and David Fors.
Palpability Support Demonstrated. In Embedded and
Ubiquitous Computing, volume 4808 of LNCS, pages
294–308. Springer, 2007.

[5] Erik Christensen et al. Web Services Description
Language (WSDL) 1.1. W3C, March 2001.

[6] W. Keith Edwards, Mark W. Newman, Jana Z.
Sedivy, and Shahram Izadi. Challenge: recombinant
computing and the speakeasy approach. In
MOBICOM, pages 279–286. ACM, 2002.

[7] P. Th. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Surveys, 35(2):114–131, June 2003.

[8] David Garlan, Dan Siewiorek, Asim Smailagic, and
Peter Steenkiste. Project Aura: Toward
Distraction-Free Pervasive Computing. IEEE
Pervasive Computing, 1(2):22–31, 2002.

[9] D. Gelernter and N. Carriero. Coordination languages
and their significance. CACM, 35(2):97–107, 1992.

[10] E. Grönvall, L. Piccini, A. Pollini, A. Rullo, and
G. Andreoni. Assemblies of Heterogeneous
Technologies at the Neonatal Intensive Care Unit. In
Ambient Intelligence, volume 4794 of LNCS, pages
340–357. Springer, 2007.

[11] Martin Gudgin et al. SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition), April 2007.

[12] IBM. IBM developerWorks : WebSphere.
http://www.ibm.com/developerworks/websphere/.

[13] Jini.org. Jini Specifications. http://www.jini.org/w/
index.php?title=Category:Jini_Specifications.

[14] S. C. Kendall, J. Waldo, A. Wollrath, and G. Wyant.
A Note on Distributed Computing. Technical Report
TR-94-29, Sun Microsystems, Nov. 1994.

[15] Morten Kyng and Margit Kristensen. Supporting
palpability in emergency response. In Designing for
palpability Workshop at Pervasive 2007, Toronto,
Canada, 2007.

[16] Doug Lea, Steve Vinoski, and Werner Vogels. Guest
editors’ introduction: Asynchronous middleware and
services. IEEE Internet Computing, 10(1):14–17, 2006.

[17] David Martin et al. OWL-S: Semantic markup for web
services. World Wide Web consortium, 2004.

[18] Microsoft. Microsoft BizTalk Server.
http://www.microsoft.com/biztalk/.

[19] OASIS. UDDI Version 3.0.2. UDDI Spec Technical
Committee Draft, Dated 20041019.

[20] OASIS. Web Services Business Process Execution
Language Version 2.0, April 2007.

[21] PalCom Project. Open Architecture, Deliverable 54.
December 2007.

[22] PalCom web site. Palpable Computing—a new
perspective on Ambient Computing.
http://www.ist-palcom.org/.

[23] Matthias Radestock and Susan Eisenbach.
Coordination in evolving systems. In TreDS, volume
1161 of LNCS, pages 162–176. Springer, 1996.

[24] M. Román, C. Hess, R. Cerqueira, A. Ranganathan,
R. H. Campbell, and K. Nahrstedt. A Middleware
Infrastructure for Active Spaces. IEEE Pervasive
Computing, 1(4):74–83, 2002.

[25] Daniel Steinberg and Stuart Cheshire. Zero
Configuration Networking: The Definitive Guide.
O’Reilly Media, Inc., 2005.

[26] D. Svensson, G. Hedin, and B. Magnusson. Pervasive
applications through scripted assemblies of services.
IEEE Int. Conf. on Pervasive Services, July 2007.

[27] D. Svensson and B. Magnusson. An Architecture for
Migrating User Interfaces. In NWPER’2004, pages
31–44, Turku, Finland, Aug. 2004.

[28] David Svensson Fors. Assemblies of Pervasive
Services. PhD thesis, Dept. of Computer Science,
Lund University, Sweden, February 2009.

[29] David Svensson Fors, Boris Magnusson, Sven
Gesteg̊ard Robertz, and Görel Hedin. When you’re
dead or gone: Undiscovery for pervasive applications.
Submitted, 2009.

[30] UPnPTM Forum. UPnPTM Standards.
http://www.upnp.org/standardizeddcps/.

[31] UPnPTM Forum. UPnPTM Device Architecture 1.0.
Technical report, http://www.upnp.org/, Dec 2003.

[32] N. Venkitaraman. Wide-Area Media Sharing with
UPnP/DLNA. Consumer Communications and
Networking Conference, 2008. CCNC 2008. 5th IEEE,
pages 294–298, Jan. 2008.

[33] W3C. Web Services Architecture, February 2004.
[34] Jim Waldo. The Jini Architecture for Network-Centric

Computing. Communications of the ACM, July 1999.
[35] Mark Weiser. The Computer for the 21st Century.

Scientific American, 265(3):66–75, February 1991.

